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Abstract. This paper presents the b-it-bots RoboCup@Work team and
its current functional architecture for the KUKA youBot robot. We de-
scribe the underlying software framework and the developed capabilities
required for operating in industrial environments including features such
as robust manipulation and object recognition.

1 Introduction

The b-it-bots RoboCup@Work team at the Bonn-Rhein-Sieg University of Ap-
plied Sciences (BRSU) was established at the beginning of 2012. The team con-
sists of Bachelor, Master and PhD students, who are advised by one professor.
The results of several research and development (R&D) as well as Master the-
ses projects are going to be integrated into a highly-functional robot control
software system. Through these types of course modules, our RoboCup@Work
team is strongly interwoven with the Master by Research course in Autonomous
Systems, which is offered at the BRSU1. Our main research interests includes
mobile manipulation in industrial settings, omni-directional navigation in uncon-
strained environments, environment modeling and robot perception in general.
Our approach is to first identify and evaluate in each subfield the state-of-the-
art and the best practice solutions currently available. We then implement and
integrate applicable algorithms to develop our own custom approaches with a
focus on robustness in uncertain industrial environments.

2 Robot Platform

The KUKA youBot2 is the applied robot platform of our RoboCup@Work team.
It is equipped with a 5 DoF manipulator, a two finger gripper and an omni-
directional platform. In the front and the back of the platform, two Hokuyo
1 http://www.inf.h-brs.de/MAS.
2 http://www.youbot-store.com



URG-04LX laser range finders are mounted to support robust localization and
navigation. A sensor tower on the back platform hosts a Microsoft Kinect cam-
era for common perception tasks, like scene segmentation and object recognition.
Further, a Logitech webcam is mounted on the gripper for visual servoing. The
internal computer is supported by a second high performance laptop which per-
forms the computational expensive perception tasks.

3 Robot Software Framework

The underlying software framework is based on the ROS framework3. We use its
communication infrastructure based on publish/subscribe, service server/client
and action server/client to pass information between our components. The frame-
work also provides interfaces to various common hardware devices like laser scan-
ners or cameras. The wide range of various tools are utilized for visualization,
testing and debugging the whole system.

Due to the deployment of ROS, we were able to migrate functionality from
our Care-O-bot 3 robot to the KUKA youBot with less effort. All functional
components are implemented as basic ROS nodes and can be connected to more
cognitive capabilities to solve complex tasks. An example of a complex task in
industrial robotics is "pick and place" (e.g. “bring a bolt to the production line
and screw it on mounting point ’A’"). To perform this task, the robot needs
to combine several actions such as navigation, object recognition, and object
grasping. The actual scheduling is realized as a finite state machine (FSM). As
the number of capabilities of the robot grows, more complex combinations of
tasks can be performed. Although this created this versatility, scheduling by the
developer is no longer feasible. Hence, we will deploy an additional task planning
component as a replacement for the current FSM approach.

4 Navigation

In addition to map-based navigation, there is a necessity to control the robot
in its local coordinate system with respect to the sensor data to make the in-
teraction with the objects and environment much more precise. We have two
components to handle these interactions.

4.1 Relative Motion Component

This component takes care of exhibiting behavior such as moving forward/backward/right/left
or rotating clockwise/anti-clockwise based on odometry data.

4.2 Base Positioning Component

Placing the base appropriately to increase the reachability of the manipulator
is necessary to have a robust manipulation. We have two strategies to deal with
this problem.
3 http://www.ros.org



Base Align-to-Workspace: A simple and effective approach has been used in
order to align the robot perpendicular and in a certain distance to a workspace.
A linear regression model is applied to fit a line to each front laser scan. The
resulting orientation and distance to this line is fed forward to a closed loop
controller which tries to minimize both "errors" (up to a certain threshold) by
commanding linear and angular velocities to the robot’s base.

Optimal Base Placement: The previously described component is used to
compensate for inaccuracies in the map-based navigation. It ensures that the
platform will be in the field of view (FOV) of the camera and the robot is able
to locate and recognize objects on the respective platform. The recognition stage
will provide a list of recognized objects. But the desired object which the robot
needs to grasp and not be reached from the current position. Therefore, an ad-
ditional component generates a distribution of optimal base poses based on the
probability of manipulating an object successfully considering all the kinematic,
map and task constraints. This component will let the robot to choose an op-
timal place to manipulate the object with high probability of success ensuring
robustness.

5 Object Perception

Perception of objects relevant for the industrial environments is particularly chal-
lenging. The objects are typically small and often made of reflective materials
such as metal. We use a Microsoft Kinect camera which provides both intensity
and depth images of the environment. This enables effective scene segmentation
and object clustering. But the spatial resolution is low even at the close range,
and a significant degree of flickering corrupts the images. The information cap-
tured in a single frame is often not sufficient to determine the object type. We
have therefore devised a three-stage pipeline (see Figure 1) which involves data
accumulation over several consecutive frames.

The first stage is concerned with scene segmentation, or, more precisely,
finding the workspace. We capture a single point cloud and apply a passthrough
filter to restrict the FOV, which removes irrelevant data and reduces the com-
putational burden. Next we perform plane segmentation with a region-growing
algorithm. It is possible that the algorithm outputs more than one planar poly-
gon. In this case we apply orientation constraints to remove irrelevant (e.g. non-
horizontal) planes. Among the remaining we select the one with the maximum
area. Finally, we shrink the polygon by several centimeters to make sure that it
does not include the edge of the workspace.

The second stage is data accumulation. We filter each frame to keep only the
points above the workspace polygon, which we then merge into an occupancy
octree. Our experiments have shown that 30 frames is a reasonable tradeoff
between the running time and the amount of information accumulated.

The final stage is object recognition. We partition the accumulated point
cloud into clusters and fit minimal bounding boxes around them. The dimensions
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Fig. 1. Object perception pipeline

of the bounding box, the number of points in the cluster, and the average color
of the points serve as an input to a classification neural network, which we have
trained beforehand. Based on this information it outputs the predicted object
type.

The obvious limitation of the implemented system is that it considers only
the dimensions of an object, but not its shape. In the future work we would like
to add shape descriptors and possibly other high-level features to increase the
variety of objects that the system can recognize.

6 Object Tracking

In order to facilitate proper retrieval of objects which have been placed on the
rear platform of the youBot we use object tracking to register and track the
location of the objects. This is done by first recognizing an object and the lo-
cation where it was placed. This is then stored for future use when we want to
retrieve said object. We will then perform quick object recognition using the last
known location of the object to limit our search window. The goal of this work
is currently to eliminate the need for hardcoded placement position with an eye
to expanding to other applications.

7 Object Manipulation

We have used two methods for object manipulation i.e. object grasping. The first
method is based on visual servoing which is used as a fall back in the absence of
grasp planning. The second method uses grasp planning and inverse kinematics
to reach the grasp pose.



7.1 Visual Servoing

As a fall back to when the manipulation planning fails we use visual servoing to
finish the grasp action. Once the arm has been placed within range of the target
object we use visual servoing to align the robot (base/arm) with the target
object. The gripper of the youBot is also aligned with the target object in order
to better facilitate the grasping motion.

7.2 Grasp Planning

In order to plan how to actually grasp a known object, offline grasp planner
has been integrated. A database with a set of grasps for each object has been
generated using either manually setting grasp points or by using domain specific
frameworks like OpenRAVE4 or GraspIT!5. Possible grasps are pruned based
on various criteria like reachability, collision avoidance etc. We are planning to
integrate a cluster based online planning approach for online grasp planning.
Further, it is planned to incorporate the ability to grasp novel objects and to
deal with positioning errors as well as sensor uncertainties.

8 Conclusion

In this paper we presented the functional core components of the current software
architecture for the KUKA youBot robot. Besides the development of new func-
tionality, we will also focus on porting existing components from our Care-O-bot
3 robot to the youBot platform. The migration from one robot to another was and
is still an exhaustive exercise. In our current EU FP7 funded project BRICS (Best
Practice in Robotics)6 we are exploring first steps towards an improved software
development methodology in robotics. We applied the component-oriented de-
velopment approach defined in BRICS for creating our software which resulted
in high feasibility when several heterogeneous components are composed into a
complete system.
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4 http://www.openrave.org
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